Bicyclic graphs with minimal values of the detour index

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the harmonic index of bicyclic graphs

The harmonic index of a graph $G$, denoted by $H(G)$, is defined asthe sum of weights $2/[d(u)+d(v)]$ over all edges $uv$ of $G$, where$d(u)$ denotes the degree of a vertex $u$. Hu and Zhou [Y. Hu and X. Zhou, WSEAS Trans. Math. {bf 12} (2013) 716--726] proved that for any bicyclic graph $G$ of order $ngeq 4$, $H(G)le frac{n}{2}-frac{1}{15}$ and characterize all extremal bicyclic graphs.In this...

متن کامل

Bicyclic graphs with maximal revised Szeged index

e=uv∈E(nu(e)+n0(e)/2)(nv(e)+n0(e)/2), where nu(e) and nv(e) are, respectively, the number of vertices of G lying closer to vertex u than to vertex v and the number of vertices of G lying closer to vertex v than to vertex u, and n0(e) is the number of vertices equidistant to u and v. Hansen used the AutoGraphiX and made the following conjecture about the revised Szeged index for a connected bicy...

متن کامل

The harmonic index on bicyclic graphs

The harmonic index H(G) of a graph G is defined as the sum of weights 2 d(u)+d(v) of all edges uv of G, where d(u) denotes the degree of a vertex u in G. In this paper, we have determined the minimum and maximum harmonic indices of bicyclic graphs and characterized the corresponding graphs at which the extremal harmonic indices are attained.

متن کامل

On the index of bicyclic graphs with perfect matchings

Let B(2k) be the set of all bicyclic graphs on 2k(k¿ 2) vertices with perfect matchings. In this paper, we discuss some properties of the connected graphs with perfect matchings, and then determine graphs with maximal index in B(2k). c © 2004 Elsevier B.V. All rights reserved. MSC: 05c50

متن کامل

Extremal Modified Schultz Index of Bicyclic Graphs

For a graph G = (V,E), the modified Schultz index of G is defined as S∗(G) = ∑ {u,v}⊆V (G) (dG(u) · dG(v))dG(u, v) where dG(u) (or d(u)) is the degree of the vertex u of G, and dG(u, v) is the distance between u and v. Let B(n) be the set of bicyclic graph with n vertices. In this paper, we study the modified Schultz index of B(n), graphs in B(n) with the smallest modified Schultz index S∗(G) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2012

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1206263k